Prediction of Pharmacokinetics and Penetration of Moxifloxacin in Human with Intra-Abdominal Infection Based on Extrapolated PBPK Model
نویسندگان
چکیده
The aim of this study is to develop a physiologically based pharmacokinetic (PBPK) model in intra-abdominal infected rats, and extrapolate it to human to predict moxifloxacin pharmacokinetics profiles in various tissues in intra-abdominal infected human. 12 male rats with intra-abdominal infections, induced by Escherichia coli, received a single dose of 40 mg/kg body weight of moxifloxacin. Blood plasma was collected at 5, 10, 20, 30, 60, 120, 240, 480, 1440 min after drug injection. A PBPK model was developed in rats and extrapolated to human using GastroPlus software. The predictions were assessed by comparing predictions and observations. In the plasma concentration versus time profile of moxifloxcinin rats, Cmax was 11.151 µg/mL at 5 min after the intravenous injection and t1/2 was 2.936 h. Plasma concentration and kinetics in human were predicted and compared with observed datas. Moxifloxacin penetrated and accumulated with high concentrations in redmarrow, lung, skin, heart, liver, kidney, spleen, muscle tissues in human with intra-abdominal infection. The predicted tissue to plasma concentration ratios in abdominal viscera were between 1.1 and 2.2. When rat plasma concentrations were known, extrapolation of a PBPK model was a method to predict drug pharmacokinetics and penetration in human. Moxifloxacin has a good penetration into liver, kidney, spleen, as well as other tissues in intra-abdominal infected human. Close monitoring are necessary when using moxifloxacin due to its high concentration distribution. This pathological model extrapolation may provide reference to the PK/PD study of antibacterial agents.
منابع مشابه
Physiologically Based Pharmacokinetic (PBPK) model for biodistribution of radiolabeled peptides in patients with neuroendocrine tumours
Objective(s): The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK) models in patients with different neuroendocrine tumours (NET) who were treatedwith Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs) obtained by whole body scintigraphy (WBS) of the patients.Methods: The blood...
متن کاملTUNNEL BORING MACHINE PENETRATION RATE PREDICTION BASED ON RELEVANCE VECTOR REGRESSION
key factor in the successful application of a tunnel boring machine (TBM) in tunneling is the ability to develop accurate penetration rate estimates for determining project schedule and costs. Thus establishing a relationship between rock properties and TBM penetration rate can be very helpful in estimation of this vital parameter. However, this parameter cannot be simply predicted since there ...
متن کاملCombining ‘Bottom-Up’ and ‘Top-Down’ Methods to Assess Ethnic Difference in Clearance: Bitopertin as an Example
BACKGROUND AND OBJECTIVES We propose a strategy for studying ethnopharmacology by conducting sequential physiologically based pharmacokinetic (PBPK) prediction (a 'bottom-up' approach) and population pharmacokinetic (popPK) confirmation (a 'top-down' approach), or in reverse order, depending on whether the purpose is ethnic effect assessment for a new molecular entity under development or a too...
متن کاملQuantitative Property-Property Relationship for Screening-Level Prediction of Intrinsic Clearance of Volatile Organic Chemicals in Rats and Its Integration within PBPK Models to Predict Inhalation Pharmacokinetics in Humans
The objectives of this study were (i) to develop a screening-level Quantitative property-property relationship (QPPR) for intrinsic clearance (CL(int)) obtained from in vivo animal studies and (ii) to incorporate it with human physiology in a PBPK model for predicting the inhalation pharmacokinetics of VOCs. CL(int), calculated as the ratio of the in vivo V(max) (μmol/h/kg bw rat) to the K(m) (...
متن کاملComparison of the Use of a Physiologically Based Pharmacokinetic Model and a Classical Pharmacokinetic Model for Dioxin Exposure Assessments
In epidemiologic studies, exposure assessments of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) assume a fixed elimination rate. Recent data suggest a dose-dependent elimination rate for TCDD. A physiologically based pharmacokinetic (PBPK) model, which uses a body-burden-dependent elimination rate, was developed previously in rodents to describe the pharmacokinetics of TCDD and has been extrapolat...
متن کامل